
Current Landscape of Container
Virtualization Technology and Trends

2019 May 10th

Byungchul Tak
School of Computer Science and Engineering

Kyungpook National University

2

Table of Contents
§Container Introduction
§Container Orchestration
§Container Security
§Container Runtime Security

3

Container
§Definition

• Most similar to: Process
• But differs in that it has: Isolation property

H/W

Hypervisor

Guest
OS

Guest
OS

Guest
OS

Bins/
Libs

Bins/
Libs

Bins/
Libs

App App App

(Type-1) Virtualization

Host OS Kernel
Container Runtime

Bins/
Libs

Bins/
Libs

Bins/
Libs

App App App

H/W

Container

Host OS Kernel
Bins/Libs

App App App

H/W

Bare-metal

IPC

4

Container Building Blocks
q Namespaces

• Custom view of the ID space
• Limit what a process see and

access
• 7 namespaces: mnt, pid, net, uts,

ipc, user, cgroup

q Union mount
• Combining multiple directories

into one combined view
• copy-on-write policy
• Overlaying of file system

• aufs, overlayfs

q Cgroups (Control Groups)
• Kernel mechanisms for resource allocation

(limiting) and metering

• Processes are divided into hierarchical
groups (subsystems)
• can migrate between them

• Total 12 controllers
• blkio, cpu, memory, netcls, netprio,

devices, pids …
• ex) pid controller: limit # of procs that can

be forked in the group à counter the fork-
bomb

1

2 3

4 5 6

7

8(1)

9(2) 10(3)

Process Tree

File1 File2 File4 File5

File3 File5

File1 File2 File4 File5File3

5

Union Mount in Docker using Aufs
§ AUFS: Another Union File System

6

Container Platforms

§ Docker
• Most popular container platform

• Started as open-source project that automates
deployment of applications inside containers

• Provides wrapper around a software package

à Build, Ship and Run Any App Anywhere
• Easy creation, update and distribution of

container images

• Public DockerHub

• Previously based on LXC, now uses libcontainer
§ libcontainer: library for container execution driver,

interface component to use Linux features

Docker client tools

Docker Engine

containerd

containerd

-shim

containerd

-shim

containerd

-shim

User interaction point

Manages container

lifecycle – image, container

execution, network …

container runtime

following OCI spec,

spawn and run container,

uses libcontainer

via gRpc

cgroups namespaces

capabilities
netlink

netfilter
seccomp

runc runc runc

7

Container Platforms

§ Other platforms
• rkt (Rocket): developed by CoreOS, no daemon
• LXC/LXD: system container rather than application container
• Linux Vserver, OpenVZ, warden, Windows Container …

Restrict file
system view

- Opensourced Google
container
- Moved to libcontainer

Builds on top of LXC
LXC+feaures(snapshop,LM)

8

Container Orchestration

9

Container Orchestration
§ Container is a solutions for:

• Enterprise workloads
• Micro-service architecture
• DevOps, CI/CD (Continuous Integration/Delivery)
• Scalability

§ Issues with Scaling your Application
• Management Burden increases

§ Communication among them
§ Need to be placed appropriately

• Container Scheduling
§ Automatic scaling based on workloads
§ Load-balancing
§ Handle failed containers

10

Container Orchestration Platforms

Kubernetes Master

Scheduler

API Server
Controller

etcd

Kubelet Kube-proxy

Pod

Co
nt

ai
ne

r
Co

nt
ai

ne
r

Co
nt

ai
ne

r

Docker

Pod

Co
nt

ai
ne

r

Co
nt

ai
ne

r

fluentd add-ons

API
UI

CLI

Kubernetes Node

• Developed by Google
• Huge community
• Written in Go
• Solid API

• Automatic binpacking
• Self-healing
• Horizontal Scaling
• Batch execution
• Auto rollback/rollout Swarm Manager

Discovery
Service

Swarm Node

Docker Daemon

Swarm Node

Docker Daemon

Swarm Node

Docker Daemon

Docker
Client

• Integrated runtime and
orchestration

• No concept of Pods
• Faster scaling and

reaction time than
Kubernetes

• Overall, simpler than
Kubernetes

11

Kubernetes Architecture
§ Architecture Kubernetes Node

Kubelet
Kube-proxy
(net proxy)

Pod

Co
nt

ai
ne

r

Co
nt

ai
ne

r
Co

nt
ai

ne
r

Docker

Pod

Co
nt

ai
ne

r

Co
nt

ai
ne

r

Pod

Co
nt

ai
ne

r

Co
nt

ai
ne

r
Co

nt
ai

ne
r

Co
nt

ai
ne

r

Co
nt

ai
ne

r
Co

nt
ai

ne
r

fluentd add-ons

Kubernetes Master

Scheduler

API Server Controller

etcd

API

UI

CLI

§ Concepts: Pods, Namespace, Labels, ReplicaSet, Service …
§ Scheduling

• Filtering: filter out nodes that do not meet the requirement
§ NoDiskConflict, PodFitResoruce, PodFitHostPort …

• Ranking
§ finalScoreNodeA = (weight1 * priorityFunc1) + (weight2 *

priorityFunc2)
§ LeastRequestedPriority, CalculateNodeLabelPriority,

BalancedResourceAllocation, CalculateSpreadPriority,
CalculateAntiAffinityPriority

§ Pods
• Basic unit of scheduling and deployment

• Group of containers + config + shared
storage

• Moves in group

• Own IP address
• Stateless

Communication center for
developer, sysadmin and
kub components

Assign worker node to servers

Replication, worker tracking,
failure handling …

Cluster configurations
load balancing network trafficnode contact point

12

Docker Swarm

§ Architecture

Worker Node

Docker Daemon

Worker Node

Docker Daemon

Worker Node

Docker Daemon

Docker
Client

Swarm
Manager

Swarm
Manager

Swarm
Manager

Internal Distributed Store

Worker Node

Docker Daemon

Front-end
(Public-facing
load balancer)

Swarm Node

Docker Daemon

Swarm Node Swarm Node

Swarm Manager

Container

Docker Swarm 001

Docker Daemon

Docker Daemon Docker Daemon

Web request

§ Request Redirection§ Key Concepts
• Ability to deploy containers across docker

hosts
§ Using overlay network for service discovery
§ Built-in load-balancer

• Features: Cluster management, scheduling, HA,
decentralized, scaling, service discovery, load
balancing, rolling updates …

Raft concensus group

§ Service consists of:
• Image
• External port
• Overlay network
• CPU/mem limits
• Update policy
• # of replicas

§ Scheduling
• spread
• binpack
• random

13

Mesos
§ Architecture

Mesos
master

Standby
master

Standby
master

task

Hadoop executor

Mesos Agent

task

MPI executor

Mesos Agent Mesos Agent

task

Hadoop
executor

task

MPI
executor

Hadoop
Scheduler

MPI
Scheduler zookeeper quorum

§ Key concepts
• Cluster resource manager

§ Scheduling of VM/containers …

• Distributed OS
• Provides single resource image

§ Two-level Resource offer mechanism

http://mesos.apache.org/documentation/latest/architecture/

http://mesos.apache.org/documentation/latest/architecture/

14

Rancher
§ Architecture

Rancher
UI

Cluster Controller Cluster Agent 1

Cluster Agent 2Rancher API
Server

Auth Proxy etcd

Rancher Server

CLI

API

kubectl

Kubernetes
API

RKE
Kubernetes

Master

GKE
Kubernetes

Master

kublet

Pod

kublet

Pod

kublet

Pod

kublet

Pod

kublet

Pod

kublet

Pod

§ Software Stack

15

Comparison of Container Orchestration Tools

Kubernetes Docker Swarm Mesos
Auto-scaling User specify the # of Pods, CPU utilization per Pods No autoscaling. User manually specifies

the # of instance and update the config

Need to use Marathon framework (marathon-

autoscale.py)

Load balancing Pods exposed as Service. Ingress is used. Auto-forwarding between nodes Need to use add-on ‘Marathon’ framework

Service Discovery Yes, Embedded DNS server Yes, Embedded DNS server Yes, Embedded DNS server

Self-healing Yes, Pod state is defined and liveness, readiness

check is performed to find any failures

Yes Marathon framework needed for self-healing

functionality

High Availability Yes, Master replicated Yes, multiple manager node supported Yes, multiple master with zookeeper coordination

Secret (Pwd/token/key)

management

Yes, Secret objects created at apiserver Yes, Docker Secrets manager provided No

Scheduler Two step algorithm of Filtering, Ranking Spread, Binpack, Random Algorithm

Support

Two level algorithm: master offers resource

amount and framework accepts it

Licence Apache License 2.0 Apache License 2.0 Apache License 2.0

Networking Flat network model Support bridge, overlay, macvlan or 3rd

party plugin driver

less focus on networking, 3rd party plugin driver

Rolling Update Yes Yes No

Application Definition Pod, Deployment, Service definitions in Yaml format Docker compose Json format definition managed by Marathon

Health Check Liveness check, Readiness check for application

pods

Dockerfile can specify HEALTHCHECK

directive

Native health check and plugin (HTTP) check by

Marathon or Aurora

16

Container for HPC

17

Container for HPC
§ Pain points of HPC that lasted decades

• Dependency hell
• Reproducibility à distribute and validate
• Mobility

§ Mismatch of Docker (or Containers) use
case
• Containers target enterprise workload

§ micro-services and massive/fast scale-out
§ fast continuous deployment cycle

• HPC does not need massive scale-out

Docker provides:
ü Solution to dependency hell
ü Reproducibility
ü Mobility (partially)

But, Docker introduces new problems:
• Dangerous to install to HPC center

ex) kernel version upgrade maybe needed
• Security issue

• docker deamon runs in root
• container root can have root access of host

• Performance issue (use of spec. HW)
• Lack of support for HPC S/W stacks

• MPI, Slurm, torque, GPU libs …
• Integration to WLM

18

Singularity
§ Design goal

• Mobility of compute, BYOE, UDSS
• Single file has everything

§ Docker uses layers
• Limit user privileges

§ Must be root outside to be root inside

• No root-owned daemon (like Docker)
• Integration with HPC S/W stacks and infrastructure

§ Resource manager(Slurm), GPU lib, MPI, IB …
• Docker Hub compatible

§ Can pull images from docker hub to build an image MPI Support of Singularity

sudo singularity create image sudo singularity import image

sudo singularity bootstrap image

sudo singularity shell –writable image

Create a container Set up initial image content

Add/update/modify the image

singularity run image

singularity shell image

singularity exec image

In HPC center hardware

In user machine
with root access

•mpirun invoked
•orted created
•singularity ‘exec’ed
•mpi program within the

container run
•mpi tries to contact orted via

PMIx
•singularity connects this PMIx

link to orted

Singularity
Workflow

19

Shifter
§ What is Shifter?

• Solution for running Docker container in HPC
environment

§ Characteristics
• Provides Docker-compatible container runtime

• Native GPU support
§ Automatic import of CUDA driver and dev

• Native MPI support
§ Swap container MPI with host MPI lib at run time

• For utilizing vendor-specific features (IB)

• Single executable

• Image manager component (image conversion)
• Docker-like CLI

• Flattened file system for performance

Create Docker Image Push to Docker Hub Pull the image to HPC center Run at scale in HPC system

Single Shifter Executable

q Image manager
• Written in C++
• Can import tar files
• Parallel and robust download

q Shifter CLI
• Similar interface to Docker
• Support for 3rd-party registry

Workflow

20

CharlieCloud
§ Design goal

• Simplicity
§ Principle of least privilege
§ Make it do one thing well

§ Characteristics
• All processes are unprivileged
• cgroups not used
• PID namespace not used
• UTS namespace not used
• MNT namespace is used

§ Real problems with using Docker
• Root-owned daemon of docker is not a real

issue
• Performance is the problem – overlayfs
• Associativity – docker cli and container

association to resource manager
§ WLM integration issue

§ Workflow
• Preparing an image (need privilege here)

§ Pull from Docker, or
§ Use ch-build command

• Running a container (unprivileged)

§ ch-run performs:
• Set up namespace
• bind-mount host directories
• change container root directory via pivot_root
• perform execvp

ch-build –t hello ~/container_src
ch-docker2tar hello /var/tmp

ch-tar2dir /var/tmp/hello.tar.gz /var/tmp/hello
ch-run /var/tmp/hello – cat /etc/debian_version

21

Container Security

22

Container Security Domains

Code
Commit

Image
Build

Image
Push

Image
Scan

Promote to
Production

Deploy Monitor

Dev
Repository

Prod
Repository

• Runtime Behavioral Monitoring
• Network Monitoring

Push

• Code-level Vulnerability Detection in Build-script
• Build-script Best-practice Compliance Check

(1) (2)

(4)

• Compliance Check
• Malware Scanning
• Vulnerable Package Scanning

External
Repository

New
Image

(3) Secure Container
Runtime Engine

CD/CI

Approved
(signed)
Image

ex) DockerBench
CoreOS Clair
Anchore
Cilium
OpenSCAP
Anchor …

ex) Notary
ex) Cilium

AppArmor
Sysdig Falco
StackRox
Twistlock
NeuVector …

ex) gVisor, Nabla, Kata, Firecracker

23

Domain of Container Security
§ Topics

• Container image scan
§ Vulnerabilities using CVE data
§ Compliance conformance, best practice rules

• Image signing
• Docker engine, Docker daemon security, Host security
• Network security
• Runtime protection
• Multi-functional tools

§ Compliance, Image scan, Vulnerabilities, Runtime protection
§ CI/CD integration
§ Machine learning for behavioral patterns

24

Container Security Tools
Name Functions Lincense Notes

Anchor Image scan (Vulnerabilities), Compliance Proprietary
AppArmor Runtime protection Opensource Integrated to docker
AquaSec Image scan, Runtime protection Proprietary

Black Duck Docker Security Image scan Proprietary
Cilium Network security Opensource Uses BPF. Good community.
Cavirin Image scan, Runtime protection, Compliance Proprietary

CoreOS Clair Image scan Opensource Static analysis
Docker-bench for Security Compliance Opensource Based on CIS benchmark

Dockscan Compliance Opensource Simple ruby scripts for docker and running containers
Sysdig Falco Runtime alert, behavioral monitoring Opensource Auditing tools, monitor container without instrumentation,
NeuVector Compliance, Runtime protection Proprietary Enforcer container with full access to docker daemon

Notary Trusted image repository Opensource Docker image signing framework, By Docker, Owned by CNCF.
OpenSCAP Compliance Opensource oscap-docker for image and running containers
Seccomp System call filtering rules Opensource Integrated to docker
StackRox ML Runtime protection Proprietary

Sysdig debugging, forensics Both Syscall recording
Tenable Flawcheck Image scan Proprietary

Twistlock Image scan, Runtime protection, Compliance Proprietary Vulnerability explorer
Drydock Security audit tool Opensource In Python. Inspired by Docker-bench-security.
Actuary Compliance Opensource Inspired by Docker-bench-security.
Dagda Image scan for vulnerabilities and running containers Opensource Static analysis, antivirus scan using ClamAV, in Python

Grafaes Metadata API for enforcing policies Opensource

25

Docker Security using Kernel Features

§ Seccomp

• Syscall filtering mechanisms of

Linux kernel

• List of syscalls and actions

• docker integration

• Problem

§ Which syscall to filter?

{
"defaultAction":"SCMP_ACT_KILL",
"syscalls":[

{

"name":"chmod",
"action":"SCMP_ACT_ERRNO"

}
]

}

docker run –security-opt seccomp=./default.json alpine sh

§ Linux Capabilities

• Layer above seccomp

• More fine-grained control of

permissions

§ slicing of root power

• Integrated to docker

§ default set of capabilities in docker

container

chown, dac_override, fowner, fsetid, kill,

setgid, setuid, setpcap, net_bind_service,

net_raw, sys_chroot, mknod, audit_write,

setfcap

à disallow root of container to see certain

files owned by others

à disallow a container to spy on network

packets

§ AppArmor

• Comprehensive security feature of

Linux kernel

• Per-program profile

• Fine-grained access to files

• Capabilities included

docker run –it –cap-drop=DAC_OVERRIDE alpine sh

–cap-drop=NET_RAW

network inet tcp
network inet udp
network inet icmp

deny network raw
deny network packet

file,
umount,

deny /bin/** wl,
deny /etc/** wl,
deny /home/** wl,
…
capabilities chown,
capabilities dac_override,
capabilities setuid,
capabilities net_bind_service,

deny @{PROC}/* w,
deny @{PROC}/{[^1-9], [^1-9][^0-9], [^1-9][^0-
9][^0-9], [^1-9][^0-9][^0-9][^0-9]*}/** w,
deny /sys/[^f]*/** wklx,
…docker run --rm -it --security-opt apparmor=docker-default hello-world

Set errno without

executing the

system call

26

Other Security Tools
§ CoreOS Quay

• Image scanning and analysis
• Log in, do 'docker push' to quay registry.
• Check the results on the web page

§ Vulnerabilities, CVE info

27

Other Security Tools
§ Twistlock

28

Other Security Tools
§ Twistlock

29

Other Security Tools
§ Twistlock – Runtime radar

• Container-centric environment visualization (w.r.t pods and services)
• Can specify network rules
• Can specify system call rules

30

Other Security Tools
§ Cillium

• iptables doesn't work for
containers

• allows apps to talk to certain apps

§ Notary
• De facto Docker image signing framework
• Digitally sign image collections
• Consumers verify the origin and content

integrity

31

Container Runtime Security

32

Container Security Domains

Code
Commit

Image
Build

Image
Push

Image
Scan

Promote to
Production

Deploy Monitor

Dev
Repository

Prod
Repository

• Runtime Behavioral Monitoring
• Network Monitoring

Push

• Code-level Vulnerability Detection in Build-script
• Build-script Best-practice Compliance Check

(1) (2)

(4)

• Compliance Check
• Malware Scanning
• Vulnerable Package Scanning

External
Repository

New
Image

(3) Secure Container
Runtime Engine

CD/CI

Approved
(signed)
Image

ex) DockerBench
CoreOS Clair
Anchore
Cilium
OpenSCAP
Anchor …

ex) Notary
ex) Cilium

AppArmor
Sysdig Falco
StackRox
Twistlock
NeuVector …

ex) gVisor, Nabla, Kata, Firecracker

33

Container Runtime

§ Container Runtime
• Module that set up namespaces and cgroups

(using libcontainer)
• Transient – Once container is up, it

disappears
• OCI-compliance

§ Runtimes
• runc: default docker container runtime
• runsc: gVisor runtime
• runnc: Nabla container runtime
• kata-runtime: Kata container runtime
• rkt

Docker client tools

Docker Engine

containerd

containerd
-shim

containerd
-shim

containerd
-shim

User interaction point

Manages container
lifecycle – image, container
execution, network …

container runtime
following OCI spec,
spawn and run container,
uses libcontainer

via gRpc

cgroups namespaces

capabilities
netlink

netfilter
seccomp

runc runc runc

34

Attack Model
§ Attack model for Secure Container Runtime

• Scenario
§ Service model that needs to run unsafe code uploaded from outside

• Container Escape
§ Exploit bugs in Linux Kernel via syscalls
§ Obtain elevated privilege

Linux kernel

Node

Container
Escape

35

gVisor

§ gVisor
• Syscall interception via ptrace or

KVM
• Sentry: micro kernel

§ 200+ syscalls implemented
§ 10~30 actual syscalls to Host kernel

• Gofer handles File I/O and
network I/O

36

Nabla Container

§Nabla container
• Nabla containers use library OS (aka unikernel)

techniques, specifically those from the Solo5

Project

§ To avoid system calls and thereby reduce the attack
surface

• Nabla containers use 7 system calls

§ ‘read’, ’write’, ‘exit_group’, ‘clock_gettime’, ‘ppoll’,
‘pwrite64’, ‘pread64’

§ All others are blocked via a Linux seccomp policy

• Library OS (unikernel)

§ Specialized, single-address-space machine images
constructed by using library operating systems.

§ Minimal set of libraries required for their application to
run.

• Rumprun

§ Default unikernel in Nabla container

37

Kata Container

§ Kata container

• VM-based

• Replace runc with Kata-runtime

• Heavy memory optimization

§ No guest page cache

§ Shared Rootfs

§ memory deduplication via KSM

§ Kata container Components

• Agent: daemon inside VM that manages

/create container processes inside the VM

• Runtime: OCI-compliant, handles commands

to launch container, create shims

• Shim: representation of container processes

inside VM, forwards stdin, stdout and signals

38

Summary and Conclusion
§ Container technology is the dominant technology in the market today
§Mainstream container (orchestration) technologies

• Docker, Kubernentes
§HPC community moving towards containers
§ Security is the most critical concern

• Weak isolation property
• Various exiting system security tools are adapted into the container world
• There are several efforts to building secure container runtimes

